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Abstract

Spectral clusteringefers to a flexible class of clustering procedures that cadyze high-quality clus-
terings on small data sets but which has limited applicghit large-scale problems due to its computa-
tional complexity ofO(n?), with n the number of data points. We extend the range of spectisteriog by
developing a general framework for fast approximate spectustering in which a distortion-minimizing
local transformation is first applied to the data. This framek is based on a theoretical analysis that pro-
vides a statistical characterization of the effect of ladiatortion on the mis-clustering rate. We develop
two concrete instances of our general framework, one baséacal k-means clustering (KASP) and one
based on random projection trees (RASP). Extensive expetsrshow that these algorithms can achieve
significant speedups with little degradation in cluster@eguracy. Specifically, our algorithms outperform
k-means by a large margin in terms of accuracy, and run selrmes faster than approximate spectral clus-
tering based on the Nystrom method, with comparable acguanad significantly smaller memory footprint.
Remarkably, our algorithms make it possible for a singletmrazto spectral cluster data sets with a million
observations within several minutes.

1 Introduction

Clustering is a problem of primary importance in data ministtistical machine learning and scientific
discovery. An enormous variety of methods have been degdloper the past several decades to solve clus-
tering problems [15, 20]. A relatively recent area of focas beerspectral clusteringa class of methods
based on eigendecompositions of affinity, dissimilaritkemel matrices [21, 29, 33]. Whereas many clus-
tering methods are strongly tied to Euclidean geometry,ingadxplicit or implicit assumptions that clusters
form convex regions in Euclidean space, spectral methadmare flexible, capturing a wider range of ge-
ometries. They often yield superior empirical performant®n compared to competing algorithms such
ask-means, and they have been successfully deployed in nusiapplications in areas such as computer
vision, bioinformatics, and robotics. Moreover, there giastantial theoretical literature supporting spectral
clustering [21, 37].

Despite these virtues, spectral clustering is not widegmwed as a competitor to classical algorithms
such as hierarchical clustering akameans for large-scale data mining problems. The reasasiste state
— given a data set consisting nfdata points, spectral clustering algorithms fornrar n affinity matrix
and compute eigenvectors of this matrix, an operation thatehcomputational complexity 6f(n3). For
applications withn. on the order of thousands, spectral clustering methodsitiediecome infeasible, and
problems withn in the millions are entirely out of reach.

In this paper we focus on developing fast approximate algars for spectral clustering. Our approach
is not fundamentally new. As in many other situations in dabaing in which a computational bottleneck
is involved, we aim to find an effective preprocessor thatices the size of the data structure that is input
to that bottleneck (see, e.g., [26, 28]). There are manyaoptihat can be considered for this preprocessing
step. One option is to perform various forms of subsamplindp® data, selecting data points at random or
according to some form of stratification procedure. Anothglion is to replace the original data set with
a small number of points (i.e., “representatives”) that &ntapture relevant structure. Another approach
that is specifically available in the spectral clusterintjisg is to exploit the literature on low-rank matrix



approximations. This last approach has been particuladynment in the literature; in particular, several
researchers have proposed using the Nystrom method f&rrestuction [9, 38, 11]. While it is useful

to define such preprocessors, simply possessing a knobahatdjust computational complexity does not
constitute a solution to the problem of fast spectral cliste What is needed is an explicit connection
between the amount of data reduction that is achieved by @rgressor and the subsequent effect on the
clustering. Indeed, the motivation for using spectral rod#is that they can provide a high-quality clustering,
and if that high-quality clustering is destroyed by a pregssor then we should consider other preprocessors
(or abandon spectral clustering entirely). In particulais not satisfactory to simply reduce the rank of an
affinity matrix so that an eigendecomposition can be peréatin a desired time frame, unless we have an
understanding of the effect of this rank reduction on thetelting.

In this paper we propose a general framework for fast speciatering and conduct an end-to-end
theoretical analysis for our method. In the spirit of ratetattion theory, our analysis yields a relationship
between an appropriately defined notion of distortion afrnipet and some notion of clustering accuracy at
the output. This analysis allows us to argue that the goalps&processor should be to minimize distortion;
by minimizing distortion we minimize the effect of data retion on spectral clustering.

To obtain a practical spectral clustering methodology, estmake use of preprocessors that minimize
distortion. In the current paper we provide two examplesumhspreprocessors. The first is classikal
means, used in this context as a local data reduction step.s@tond is the Random Projection tree (RP
tree) of [8]. In either case, the overall approximate sgatiustering algorithm takes the following form:
(1) coarsen the affinity graph by using the preprocessorltapse neighboring data points into a set of local
“representative points,” (2) run a spectral clusteringoathm on the set of representative points, and (3)
assign cluster memberships to the original data pointshais¢hose of the representative points.

Our theoretical analysis is a perturbation analysis, sinii spirit to those of [21] and [29] but different
in detail given our focus on practical error bounds. It imal®rth noting that this analysis has applications
beyond the design of fast approximations to spectral alungte In particular, as discussed by [19], our
perturbation analysis can be used for developing distibuersions of spectral clustering and for analyzing
robustness to noise.

The remainder of the paper is organized as follows. We begimanbrief overview of spectral clustering
in Section 2, and summarize the related work in Section 3. ectiSn 4 we describe our framework for
fast approximate spectral clustering and discuss two imelgations of this framework — “KASP,” which
is based ork-means, and “RASP,” which is based on RP trees. We evaluatalgorithms in Section 5,
by comparing both KASP and RASP with Nystrom approximatiodk-means. We present our theoretical
analysis in Section 6. In particular, in that section, wevpte a bound for the mis-clustering rate that depends
linearly on the amount of perturbation to the original d&ke then turn to an analysis of the performance of
our approximate algorithms in Section 7. Finally, we codelin Section 8.

2 Spectral clustering

Given a set of: data pointsg,, . .., x,, with eachx; € R?, we define araffinity graphG = (V, E) as an
undirected graph in which th&" vertex corresponds to the data poigt For each edgéi, j) € F, we
associate a weight;; that encodes the affinity (or similarity) of the data poirisandx;. We refer to the
matrix A = (a;;);;—, of affinities as theffinity matrix

The goal of spectral clustering is to partition the data imtalisjoint classes such that eaghbelongs
to one and only one class. Different spectral clusteringritlyns formalize this partitioning problem in
different ways [33, 27, 29, 39]. In the current paper we adlophormalized cut¢Ncut) formulation [33]*
Define W (Vi,V2) = > icv, jev, ai; for two (possibly overlapping) subsets andV; of V. LetV =

IWe use Ncut only for concreteness; our methodology appiesddiately to other spectral clustering formulations.



Algorithm 1 SpectralClusteringxi, . .., x,)
Input:  n data points{x;}7, x; € R
Output: Bipartition S and S of the input data

1. Compute the affinity matrixd with elements:
2
a;j = exp (—%), i,j=1,...,n
2. Compute the diagonal degree matrix D with elements:
di = Z?:l Qij
3. Compute the normalized Laplacian matrix:
L=D"32(D—A)D 2
4. Find the second eigenvector of L
5. Obtain the two partitions using:
S={i:(ve); >0}, S={i:(v2); <0}

(1, ..., V,,) denote a partition oF, and consider the following optimization criterion:

: 1)

m
Nout — 3~ W% VVV>(V vggv Vi)
j=1 J
In this equation, the numerator in t}i¢* term is equal to the sum of the affinities on edges leavingubeet
V; and the denominator is equal to the total degree of the slsélinimizing the sum of such terms thus
aims at finding a partition in which edges with large affirstiend to stay within the individual subséts
and in which the sizes of thig; are balanced.

The optimization problem in (1) is intractable and speatitaktering is based on a standard relaxation
procedure that transforms the problem into a tractableneigetor problem. In particular, the relaxation for
Ncut is based on rewriting (1) as a normalized quadratic fiowolving indicator vectors. These indicator
vectors are then replaced with real-valued vectors, liegult a generalized eigenvector problem that can be
summarized conveniently in terms of the (normalized) gragblacianZ of A defined as follows:

L=D3*D—-AD :=]-D2AD 2 =] —L", @)

whereD = diag(d, ..., d,) with d; = 2?21 a;j,i = 1,...,n, and where the final equality defings.

Ncut is based on the eigenvectors of this normalized gragiiac@an. The classical Ncut algorithm
focuses on the simplest case of a binary partition [33], @fohds multiway partitions via a recursive invoca-
tion of the procedure for binary partitions. In the case ofrely partition, it suffices to compute the second
eigenvector of the Laplacian (i.e., the eigenvector withghcond smallest eigenvalue). The components of
this vector are thresholded to define the class membershtpe data points. Although spectral clustering
algorithms that work directly with multiway partitions exi4, 39], in the current paper we will focus on the
classical recursive Ncut algorithm. We assume that the murobclusters is given a priori and we run the
recursion until the desired number of clusters is reached.Agorithm 1 for a specific example of a spectral
bipartitioning algorithm where a Gaussian kernel is useditiine the pairwise affinities.

3 Related Work

An influential line of work in graph partitioning approachbs partitioning problem by reducing the size of
the graph by collapsing vertices and edges, partitioniagthaller graph, and then uncoarsening to construct
a partition for the original graph [17, 23]. Our work is sianilin spirit to this multiscale approach; we provide



rigorous theoretical analysis for a particular kind of c®aring and uncoarsening methodology. More gener-
ally, our work is related to a tradition in the data mining aommity of using data preprocessing techniques
to overcome computational bottlenecks in mining largdesdata. Examples include [28], who proposed a
nonparametric data reduction scheme based on multiscatétylestimation, and [5], who proposed a fast
algorithm to extract small “core-sets” from the input détased on whiclil + €)-approximation algorithms
for the k-center clustering have been developed.

Our work is also related to the literature on kernel-basedni@g, which has focused principally on
rank reduction methods as a way to attempt to scale to larges#ds. Rank reduction refers to a large
class of methods in numerical linear algebra in which a masrreplaced with a low-rank approximation.
These methods have been widely adopted, particularly indhtext of approximations for the support vector
machine (SVM) [9, 38, 10, 34]. The affinity matrix of spectrhistering is a natural target for rank reduction.
In particular, [11] have used the Nystrom approximatiohjali samples columns of the affinity matrix and
approximates the full matrix by using correlations betwdgensampled columns and the remaining columns.
A variety of sampling procedures can be considered. [38Jumé®rm sampling without replacement, and
[11] use a similar strategy in applying the Nystrom methodnage segmentation. A drawback of these
procedures is that they do not incorporate any informattosuathe affinity matrix in choosing columns to
sample; moreover, they do not come with performance guagant

[9] replace the uniform sampling step with a judiciously sn sampling scheme in which columns of
the Gram matrix are sampled with probability proportioweatteir norms. While this yields a rigorous bound
on the approximation error of Gram matrix, this method magdh® select a large number of columns to
achieve a small approximation error. It is shown that witblqability at least — §

IG = Gillr < |G = Gullr +¢ ) G, ®)

i=1

whereG, is the best rank: approximation toG. This yields a rigorous bound for approximation of the
Gram matrix. However, as the number of sampled columfi®m G is on the order oD (1og(%) . }4)

the algorithm has a computational complexity on the orded @flog(})/€*)?). The right hand side of (3)
indicates that a very smadl might be required in order to obtain a small approximatiamersuch that
the number of rows to be selected will be large. For examplenithe Gaussian kernel is used, the term
>, G% may grow on the order of(n). Thus the number of columns sampled is expected tO pe).

As an example of this scaling, Fig. 1 plots the growth}lozzlzl G2 with data sets generated from a two-
component Gaussian mixturéN (1, £) + $ N (—u, X), with o = (1,1) andS = [1, 0.5;0.5, 1], whereG

is the Laplacian matrix of the pairwise affinity matrix foetdata.

Although the Nystrom method reduces the rank of the kerragtin its working memory requirement
can be very high. For example, a data set of size 100,000 nuayreemore tharGB of memory while a
data set of size 1,000,000 may require more tH&®B of memory. Another issue with the Nystrom method
is that in data sets that are unbalanced the number of obEgryaelected by the sampling procedure from
the small clusters may be small (if not zero), which can causall clusters to be missed and may potentially
lead to problems with numerical stability.

4 Fast spectral clustering

In this section we present our algorithmic framework fot fgsectral clustering. Our approach reposes on
the theoretical analysis of spectral clustering that wesgmein Section 6. In that section we establish a
guantitative relationship between the mis-clustering edtthe output of a spectral clustering algorithm and
the distortion in the input. This motivates our interest Igoaithms that invoke a distortion-minimizing
transformation on the original data before performing saéclustering.

Our algorithm consists of a data preprocessing step ang#wral clustering step. In the current section
we present two different ways of achieving the first step: isngased ork-means and the other is based
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Figure 1: The growth of >°" | G for data generated from the Gaussian mixtré(u, $) + s N (—pu, %)
with 1 = (1,1) andX = [1, 0.5;0.5, 1].

| Symbol | Meaning
m Number of clusters for partitioning input data
n,d Size and dimension of input data
Xi, X4 Input data point and its perturbed version
Vi, Yk k representative points
€,€; Perturbation error
p Mis-clustering rate
G, G Distribution of input data and its perturbed version
A A Affinity matrix and its perturbed version
L,L Laplacian matrix and its perturbed version
L°, 1%, L% | Shorthand fo>~2 AD~ 2, with varying affinity matrix
d; Sum of rows of affinity matrix
A2, AB,va,up | The second eigenvalue and eigenvector of Laplacian matrix
g, 90 Eigengap of Laplacian matrix

Table 1: Notation.

on random projection trees. We have chosen these two ag@eaecause of their favorable computational
properties and the simplicity of their implementation. [Bab summarizes our notation.

4.1 Fast spectral clustering withk-means

Vector quantization is the problem of choosing a set of regméative points that best represent a data set in
the sense of minimizing a distortion measure [13]. When ibtodion measure is squared error, the most
commonly used algorithm for vector quantizationkigneans, which has both theoretical support and the
virtue of simplicity. Thek-means algorithm employs an iterative procedure. At eachtibn, the algorithm
assign each data point to the nearest centroid, and reasdsuhe cluster centroids. The procedure stops
when the total sum of squared error stabilizes.

The use that we make éfmeans is as a preprocessor for spectral clustering. Ircpknt, we propose a
“k-means-based approximate spectral clustering” (KASRrdlgn that has the form in Algorithm 2.

The computational complexity of stepA-means, i€)(knt), wheret is the number of iteratiods Given

2There also exist approximatemeans algorithms (e.g., tfié¢ + €) k-means in [24]) with a running time @ (nt).



Algorithm 2 KASP (x1,...,Xy, k)

Input: n data pointgx;}? ,, number of representative poiris
Output: m-way partition of the input data

1. Performk-means withk clusters orx., ..., x, to:
a) Compute the cluster centroigls, . . . , yi. as thek representative points.
b) Build a correspondence table to associate eaatith the nearest cluster centrojg.
2. Run a spectral clustering algorithmgn, . . ., y to obtain anm-way cluster membership
for each ofy;.
3. Recover the cluster membership for eagliy looking up the cluster membership
of the corresponding centrojd; in the correspondence table.

that the complexity of step 2 i©(k®) and the complexity of step 3 i©(n), the overall computational
complexity of KASP isO(k3) + O(knt). In the evaluation section we compare KASP to the alteraatfv
simply runningk-means on the entire data set.

4.2 Fast spectral clustering with RP trees

RP trees are an alternative temeans in which a distortion-reducing transformation isaoted via random
projections [8]. An RP tree gives a partition of the data spawith the center of the mass in each cell
of the partition used as the representative for the datatpairthat cell. RP trees are based /ol trees,
which are spatial data structures that partition a dataesspgaecursively splitting along one coordinate at
a time [2]. Rather than splitting along coordinate direcsioRP tree splits are made according to randomly
chosen directions. All points in the current cell are prigdclong the random direction and the cell is then
split. While classicak-d trees scale poorly with dimensionality of the data spaee td the restriction to
axis-parallel splits, RP trees more readily adapt to thenisit dimensionality of the data.

Using the RP tree as a local distortion-minimizing transfation, we obtain the “RP-tree-based approx-
imate spectral clustering” (RASP) algorithm by replacitepsl in Algorithm 2 with:

e Build anh-level random projection tree an, . . ., x,,; compute the centers of mags, . . ., yi of the
data points in the leaf cells as theepresentative points.

The total computational cost of this methodigk?) + O(hn), where theD(hn) term arises from the cost of
building theh-level random projection tree.

5 Evaluation

Before turning to our theoretical analysis of KASP and RAB®present a comparative empirical evaluation
of these algorithms. We have conducted experiments with sketis of various sizes taken from the UCI
machine learning repository [3]; an overview is given by [€ah

The original USCI (US Census Income) data set has 299,2&mioss with 41 features. We excluded in-
stances that contain missing items, and removed featufe 22, #28 and #30, as they have too many miss-
ing instances. We were left with 285,799 instances Witlieatures, with all categorical variables converted
to integers. The Poker Hand data set consists0oflasses with a total of 1,000,000 instances. However,
the original data set is extremely unbalanced — theré atasses which together comprise less thgnof
the total number of instances. We merged small classeshegetile leaving the large classes untouched.
We obtained3 final classes which correspond to ab60t12%, 42.25% and7.63% of the total number of
instances, respectively. We normalized the Connect-4 &®@ldlata sets so that all features have mean 0



Dataset | # Featureg #instanceg # classes
Medium size

ImageSeg 19 2,100 7
Musk 166 6,598 2
penDigits 16 10,992 10
mGamma 10 19,020 2
Large size

Connect-4 42 67,557 3
USCI 37 285,779 2
Poker Hand 10| 1,000,000 3

Table 2: UCI data sets used in our experiments.

and standard deviation 1. For spectral clustering, we setekéandwidths via a cross-validatory search in
the rangd0, 200] (with step size).1) for each data set.

Spectral algorithms have not previously been studied oa skt as large as one million data points; the
largest experiment that we are aware of for spectral alyostinvolves the MNIST data set, which consists of
60,000 handwritten digits. In particular, [14] reportegheximents using this data set, where a total running
time of about 30 hours was required when using a fast iterafigorithm.

5.1 Evaluation metrics

We used two quantities to assess the clustering performéreeunning time and the clustering accuracy as
measured by using the true class labels associated witfroéthdata sets. Our experiments were performed
on a Linux machine with 2.2 GHz CPU with 32 GB main memory. Tirating time was taken as the elapsed
time (wall clock time) for clustering. Clustering accuraggis computed by counting the fraction of labels
given by a clustering algorithm that agree with the true llgb&his requires a search over permutations of
the classes. Let = {1,..., k} denote the set of class labels, &te) and f(-) denote the true label and the
label given by the clustering algorithm of a data point, extjwely. Formally, the clustering accuragyis
defined as

Tell,

Bf) = max {% ST (7)) = 9<xi>}} , @
i=1

wherel is the indicator function antl, is the set of all permutations an When the number of classes is
large, computing4) exactly becomes infeasible. In that case we sampled frorseti€, and computed the
best match over the sample as an estimate &f particular, in our experiments, we exhaustively enatest
11, if & < 7 and otherwise sampléeld), 000 instances fronil,.

5.2 Competing algorithms

We compare the performance of KASP and RASP with two comgetigorithms:k-means clustering and
Nystrom approximation based spectral clustering (refitto simply as Nystrom henceforth) as implemented
in [11]. Unless other specified, all algorithms were impleteel in R code.

The existing work on spectral clustering has focused ppeltj on rank reduction methods as a way
to scale to large-size data. We thus compare KASP and RASFithlgs to the rank reduction approach,
focusing on the Nystrom approximation. The idea of Nysti§ to sparsify the Laplacian matrix by random
sampling and then to take advantage of the fact that eigengegasition is usually much faster on a sparse
matrix. There are several variants available for Nystt@amsed spectral clustering, and we choose the Matlab
implementation due to Fowlkes et al. [11].



KM-2 | KM-1 KM-1 KM-1 | BF | BF | BF
(20, 200)| (20, 1000)| (50, 200)| (0.1) | (0.05) | (0.01)

ImageSeg| 50.98| 51.15 50.27 4823 | 42.00| 43.07 | 47.03
1 1 1 1 1 1 1

Musk | 54.02| 53.99 53.99 53.99 | 53.99] 53.99 | 54.01
1 6 7 13 8 2 1

penDigits || 51.61| 52.85 52.72 51.90 | 51.85| 51.88| 51.86
1 3 5 7 3 1 1

mGamma|| 64.91| 64.91 64.91 6491 | 64.91| 64.91| 64.91
1 4 4 5 5 2 1

Table 3: Evaluation ok-means on medium-size data sets with different initialiramethods. Numbers
right below the initialization methods are parametdrs;;, n;;) for KM-1 and « for BF. Each result cell
contains two numbers: the top one is clustering accuracytt@fiottom one is the running time in second.
All results are averaged ovéo0 runs.

The performance of-means can vary significantly depending on the initial@atnethod. Recently a
variety of approaches have been proposed for the initiédizaf k-means [22, 1, 31, 25, 6]. We chose to
study three initialization methods, based on their docustkfavorable performance [6, 30, 31, 25], as well
as their relatively straightforward implementation: thartigan-Wong algorithm (KM-1) [16], the sampling-
based two-stage algorithm (KM-2) (i.e., the Matlab implena¢ion of k-means with the “cluster” option),
and the Bradley and Fayyad algorithm (BF) [6]. In reportingsult fork-means results we report the highest
level of accuracy attained across these three algorithnesfch data set.

KM-1 is simply the R function kmearigwith option “Hartigan-Wong.” This function has two pararees,
n.s¢ andn;;, which denote the number of restarts and the maximal numbigerations during each run,
respectively. We ran KM-1 witlin,.s;, ni:) = (20, 200), (50, 200), (20, 1000), respectively.

KM-2 consists of two stages df-means. The idea is to rusrmeans in the first stage on a subset of
the data to obtain good initial centroids so that substhiyfiewer iterations are required fégrmeans in the
second stage. In the first stage, we samiplg (5% for the Poker Hand dataset) of the data uniformly at
random, and rurk-means withk clusters. In the second stage, we iimeans with the: cluster centers
obtained in the first stage as initial centroids. The paramdbrk-means were chosen to be, s, n;;) =
(20, 200) for the first stage anth,.s;, n;;) = (1,200) for the second stage.

BF consists of three stages kfmeans. In the first stage, BF ruhsmeans several times (we used 10
runs) on randomly selected subsets, using, say, a frastmfithe entire data set. The output centroids from
all individual runs constitutes a new data set, on which #®ad stagé-means runs. The centroids so
obtained are used as the initial cluster centers for the gtage ofk-means. In our experiment, we fixed
the parameterg,.¢, nir) = (20, 200) for the first and second stages gnd;, n;;) = (1, 100) for the third
stage, while varyinge € {0.01,0.05,0.1}.

The above are the standard settings for our first set of expats. See below for discussion of an
additional set of experiments in which the running time&:eheans was matched to that of KASP.

5.3 Evaluation results

Medium-size data.We first evaluated-means using different initialization methods and paramednfig-
urations on the four medium-size data sets. The completdt isshown in Table 3, from which we choose
the best result across @#tmeans experiments to compare with our method.

Table 4 shows the performance comparisorffemeans, Nystrom and our KASP method on the medium-
size data sets. We run KASP with KM-2 for data preprocesssmpudifferent data reduction ratigs where
~ is the ratio of the size of original data set to the reduced dat. As expected, we see thameans runs



K-means| Nystrom| v=1 | y=4 | v=38
ImageSeg|| 51.15 51.10 | 54.76 | 58.95 | 53.66
1 4 200 11 8
0.03 0.13 0.47 | 0.06 | 0.04
Musk 54.02 84.45 | 84.97 | 83.18 | 84.31
1 386 3884 | 567 162
0.07 0.42 3.2 0.32 | 0.17
penDigits 52.85 54.40 | 51.63 | 53.36 | 53.02

3 593 14188| 381 132

0.04 1.0 7.7 0.73 | 0.22
mGamma|| 64.91 70.97 | 68.60 | 70.61| 70.36
1 2510 | 71863| 1116 | 272

0.05 3.4 22.0 1.6 0.52

Table 4: Evaluation of-means, Nystrom and KASP on medium-size data sets. Eatbarghins three
numbers: the clustering accuracy, the running time in sggoand the amount of memory used in units of
GB. The parametey denotes the data reduction ratio for KASP; for Nystrom samgpthe data reduction
ratio is fixed aty = 8.

KM-2 [ KM-1 KM-1 KM-1 | BF | BF | BF
(200,20)| (1000,20)| (200,50)| (0.1) | (0.05) | (0.01)
Connect-4 || 49.63| 49.04 | 4834 | 4968 | 51.56| 53.52| 65.33

6 69 184 146 78 19 3

USCI 63.47 | 63.48 63.47 63.47 | 63.47| 63.47 | 63.47
26 169 465 310 187 44 11

Poker Hand|| 35.55| 35.64 35.58 35.52 | 35.57| 35.56| 35.56
44 524 1612 1126 331 243 35

Table 5: Evaluation ok-means on large-size data sets with different initial@atinethods. Numbers right
below the initialization methods are parametérs:;, n;;) for KM-1 and« for BF. Each result cell contains
two numbers: the top one is clustering accuracy and thetattwe is the running time in second. All results
are averaged ovarf0 runs.

the fastest among the three methods; KASP runs faster amitesdess working memory than Nystrom
when both of them use the same data reduction ratie=(8). In terms of accuracy, KASP and Nystrom
are comparable with each other, and both are better thmeans, particularly on the data sets Musk and
mGamma. From Table 4 we also see that the running time andgpmkemory required by KASP decrease
substantially as the data reduction rationcreases, while incurring little loss in clustering aamy. In fact,

we see that sometimes clustering accuracy increases whagsentbe reduced data. (This is presumably due

to the regularizing effect of the pre-grouping, where nbiging observations are forced into the same final
clusters.)

Large-size data. We now turn to the three large-size data sets. We first evaduateans with different
initialization methods and parameter configurations, apedrt the result in Table 5.

We present the results for the KASP algorithm in Table 6, whex note that we have used relatively large
data reduction ratios due to the infeasibility of running spectral clustering twe riginal data. For each
data set, we observe that when we increase the data redtation, there is little degradation in clustering
accuracy while both computation time and working memoryease substantially.

In our experiments on RASP, we used the C++ implementatidweddul Verma to build the RP tree [8]
and used this as input to our spectral clustering algoritihmplemented in R). We varied the tree depth and



v =20 v =50 v=100 | =200
Connect-4 65.70 65.69 65.70 65.69

628 138 71 51
1.6 0.35 0.28 0.20

v =100 | v=200 | v=2300 | v =500

USCI 94.04 | 93.97 94.03 94.03
796 661 554 282
1.2 0.92 0.91 0.90

v =500 | v =1000 | v = 2000 | v = 3000
Poker Hand| 50.03 | 50.01 50.01 49.84
2500 1410 510 310
0.77 0.56 0.50 0.44

Table 6: Evaluation of KASP on the three large-size datawisdifferent data reduction ratios. The values
in each cell denote the data reduction ratj9, {he clustering accuracy, the running time and the memory
usage.

required that each leaf node in the tree contains at {edéta points. The running time of RASP consists of
three parts — the construction of the tree, spectral clugt@n the reduced set, and the cluster membership
recovery. The results for RASP are shown in Table 7. Here \aiage that accuracy does not decrease over
this range of data reduction values. Comparing Table 7 ahlk B we see that RASP is roughly comparable
to KASP in terms of both speed and accurdcy.

In Table 8 we compare our methods (using the largest valudseafeduction ratio) t&-means, again
using different initialization methods and parameter gunfations fork-means and reporting the best result
as the third column of the table. We again see the significaptavement in terms of accuracy ovemeans
for two of the data sets. We also compared to Nystrom, wherertemory requirements of Nystrom forced
us to restrict our experiments to only the largest valuehefdata reduction ratios studied for KASP and
RASP. We see that KASP and Nystrom have comparable clogtagcuracy. As for the running time, we
see from Table 8 that KASP (and RASP) are 3-5 times fasterNMyatrom. (Note also that KASP and RASP
were implemented in R and Nystrom runs in Matlab; the sl@sna R relative to Matlab suggests that we
are underestimating the difference.) Another difficultghdNystrom is the memory requirement, which is
of orderO(n?). The actual memory usages were approximat€f, 12GB and17GB, respectively, for the
three large data sets, while the working memory required AR was less thanGB.

Given the large size of these data sets we are not able tosab®ekss in clustering accuracy due to
data reduction in KASP and RASP relative to the original data(because we are unable to run spectral
clustering on the original data). Instead, to provide a hougper bound, we treat the clustering problem as a
classification problem and present results from a stat&efart classification algorithm, the Random Forests
(RF) algorithm [7]. These results suggest that the dataatemiuin KASP and RASP have not seriously
degraded the clustering accuracy.

We also performed a further comparisonkefneans and our methods in which we increased the number
of restarts and iterations fdrmeans so that the running time matches that of KASP on tige ldata sets.
For these experiments we used the BF implementatidirimeans, and report the results in Table 9. Our
results show that the longer runsiefneans did not yield significant improvements in accuradhéoresults
we have reported heré-means continued to fall significantly short of KASP and Mgst on USCI and
Poker Hand.

3 Due to the random nature of RASP during the tree construstiage, we are not able to match the data reduction
ratio in RASP to that of KASP. Hence only a rough comparisquoissible between KASP and RASP.
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y=144 | v =136 | v =207
Connect-4| 65.72 63.27 63.95

107 78 67
0.14 0.14 0.13
v=170 | v =267 | v=516
USCI 92.99 93.66 92.09
1229 922 418
0.79 0.70 0.67

Y =509 | v =977 | v = 3906
Pokerhand| 50.11 | 50.03 | 49.70
1440 710 215
0.91 0.67 0.45

Table 7: Evaluation of RASP on the three large-size datavadhiddifferent data reduction ratios. The values
in each cell denote the data reduction ratj9, {he clustering accuracy, the running time and the memory
usage.

RF | K-means| Nystrom | KASP | RASP

Connect-4 || 75.00| 65.33 65.82 | 65.69 | 63.95
3 181 51 67

0.19 4.0 0.20 | 0.13

USCI 95.27| 63.47 93.88 | 94.03 | 92.09
11 1603 282 418

0.65 12.0 0.90 | 0.67

Poker Hand|| 60.63| 35.56 50.24 | 49.84 | 49.70
35 1047 310 215

0.42 17.0 0.44 | 0.45

Table 8: Comparison of Random Forests (RF) classificafiemeans, Nystrom, KASP and RASP on the
three large data sets. For RF classification, we set tharigpget sizes to be 7557, 28578 and 25010, and the
test set sizes to be 60000, 257201, and 1000000, respgctivel

6 Perturbation analysis for spectral clustering

In this section we present a theoretical analysis of theceffia spectral clustering of a perturbation to the
original data. Section 7 shows how this analysis appliebécspecific examples of KASP and RASP. It is
worth noting that our analysis is a general one, applicabéeviariety of applications of spectral clustering. In
particular, perturbations arise when the original datdrarecated, compressed, filtered, quantized or distorted
in some way. These degradations may be unavoidable consezgpief a noisy channel, or they may arise
from design decisions reflecting resource constraints pedational efficiency or privacy considerations.
Data perturbation can be modeled in several different wiagdiding contaminated distribution mod-
els [36], measurement error models [12] and mixture modelive choose to work with an additive noise
model, due to its simplicity and its proven value in a numidgroblem areas such as data filtering, quanti-
zation and compression.
We assume that the original datg, . . . , x,, are independently and identically distributed (i.i.d.yad-
ing to a probability distributiortz, and we treat data perturbation as adding a noise compeyient;:

X = X; + €, 5)

for eachi = 1,...,n, and we denote the distribution &fby . To make the analysis tractable, we further
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Stage 1 Stage 2 Stage 3 | Running time| Accuracy
Connect-4|| (1000, 2000)| (100, 1000)| (1, 1000) 40 65.68
USCI (2000, 1000)| (200, 200) | (1, 1000) 248 63.47
Pokerhand| (400, 1000) | (100, 200) | (1, 1000) 280 35.55

Table 9: Evaluation ok-means with long running time. Results are obtained withBtedley and Fayyad
(BF) implementation of 3 stages 6fmeans, and are averaged over 100 runs. We fixed0.01, and used
the pairs of number in the parenthesis for.:, n;+) in each stage.

assume that: (19; is independent ok;, which is a good approximation for many real applicatior®;[12)
thee; are i.i.d. according to a symmetric distribution with meanazand bounded support; (3) the variance
of ¢; is small relative to that of the original data, a natural agstion in our setting in which we control the
nature of the data transformation.

We aim to investigate the impact on the clustering perforreanf the perturbation. Specifically, we wish
to assess the difference between the clustering obtaindaeooriginalx, . . . , x,, and that obtained on the
perturbed data,, .. ., x,,. We quantify this difference by thmis-clustering ratewhich is defined as

n

p= % > KL # 1L},

i=1

(6)

wherel is the indicator function] = (I3,...,I,) being a vector indicating the cluster membership for
X1,...,Xp,andl = (I1,...,I,) forx,, ..., %,.

Our approach to quantifying (i.e., upper bounding) the ohisstering ratep consists of two components:
(1) a bound that relatgsto the perturbation of the eigenvector used in spectratetigy (see Section 6.1);
(2) a perturbation bound on the matrix norm of the Laplacmeteims of the amount of data perturbation (see
Section 6.2).

6.1 Mis-clustering rate via the2”4 eigenvector

Let A and L denote the affinity matrix and the Laplacian matrix, respebt, on the perturbed data. We
wish to bound the mis-clustering rapein terms of the magnitude of the perturbation= x — x. In our
early work we derived such a bound for two-class clusterimdplems [19]. The bound is expressed in terms
of the perturbation of the second eigenvector of the Laptaonatrix. We begin by summarizing this result.
Lettingv, andv, denote the unit-length second eigenvectors ahdL, respectively, we can bound the mis-
clustering rate of a spectral bipartitioning algorithm geectral clustering algorithm that forms two classes)
as follows.

Theorem 1([19]). Under the assumptions discussed in [19], the mis-clustiendte p of a spectral biparti-
tioning algorithm on the perturbed data satisfies

p < [V2 = val*. )

There are two limitations to this result that need to be awereto be able to use the result in our design
of a fast spectral clustering algorithm. First, the bounddseto be extended to the multiway clustering
problem. We achieve that by considering recursive bipaniitgs. Second, we need to estimate the amount of
perturbation to the second eigenvector of the Laplaciamixadn [19] this was done by assuming availability
of the perturbed data, an assumption which is reasonabépfaications that involve resource constraints in
a distributed computing environment, but which is not appiate here. We instead approach this problem
via a model-based statistical analysis, to be discusseédtid® 6.2. That analysis allows us to bound the
perturbation of the Laplacian matrix expressed in terms Bfabenius norm. To connect that analysis to
Theorem 1, we make use of the following standard lemma.

12



Lemma 2 ([35]). Letg denote the eigengap between the second and the third eigesvaf .. Then the
following holds:

1 = ~
Vo — <L - —L|I?).
92 = vall < L= 2+ 0 (I - £1P)

With these links in the chain of the argument in place, we tora discussion of these two remaining
problems, that of dealing with multiway clusterings and thfzbounding the norm of the perturbation of the
Laplacian matrix.

Our approach to obtaining theoretical bounds for multivgcsral clustering is a relatively simple one
that is based on recursive bipartitioning. Although it maypmssible to obtain a direct perturbation bound of
the form of Theorem 1 for the multiway case, the problem idlehging, and in our current work we have
opted for a simple approach.

Theorem 3. Assume that: 1) the assumptions of Theorem 1 hold througheutecursive invocation of
the Ncut algorithm, 2) the smallest eigenggapalong the recursion is bounded away from zero, and 3) the
Frobenius norm of the perturbation on Laplacian matricesrag the recursion is bounded b L — L||2 for
some constant > 1. Then the mis-clustering rate for an-way spectral clustering solution can be bounded
by (ignoring the higher order term on the right hand side):

m ~
p < ?'C”L_LHQF‘
0

This theorem provides an upper boundovia the perturbation of the Laplacian matrix.

Proof. Let the sequence of Frobenius norms of the perturbationehabplacian matrices and the eigengaps

along the recursion of Ncut be denoted by and g;, respectively, for = 1,...,m — 1. By definition,
go = min{g; : i = 1,...,m — 1}. Letny,...,n, denote the size of clusters returned from the Ncut
algorithm, andr4, ..., r,,_1 denote the number of mis-clustered instances within eac$ten (at the last

step of Ncut, assume that all errors go to the— 1) cluster). Then, by repeatedly applying Theorem 1
and Lemma 2, we get (ignoring the high-order terms on the-tigimd side of Lemma 2):

2 2
and 7, <(n—ni1) —,i=2,...,m— 1.

K2

Tlén'_Qla
91

Thus the final error ratg can be bounded by

1 m—1 1 L% m—1 ng
ro= THSE 5t (n—mni-1) —5
i=1 91 =2 g
1 L-r))z L—L|32
oM KR L
" 90 i=2 90
c|L - L%

6.2 Perturbation on Laplacian matrix

In this section, we develop a bound for the Frobenius norrh@fierturbation on the Laplacian matrix. Let
A=A+ AandD = D + A. Based on a Taylor expansion, we have the following appration for
L — Ll

Lemma 4. If e is small compared (element-wise)Aan the sense thatAD ||y = o(1), then

L-L=-D*AD % — (% —|—0(1)> [D*%AD*%A—AD*%AD*% .
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Moreover, using standard properties of the matrix Frobenrm [35], this yields the following inequality
for the norms: ) ) ) , }
IL = L||p < |ID72AD™2|[p + (1 + 0(1))[[AD™ 2 AD ™2 || p. ©)

In the remainder of this section we use this inequality toknaut perturbation bounds using Taylor series
expansions fof D-2AD~ || and||[AD~2 AD~2||.

At this stage of our argument we need to introduce a statistiodel for the original data. Specifically,
we need to introduce a model for data that fall into two clisst&o obtain a tractable analysis, we model
distributionG as a two-component mixture model:

G:(l—ﬂ')'Gl—Fﬂ"GQ, (9)

wherer € {0, 1} with P(r = 1) = n. The effect of data perturbation is to transform this moded a new
mixture model specified b§ = (1 — 7) - G1 + 7 - G2, whereGG; andG» are obtained through Eg. (5).
The perturbation to the affinity between andx; is given by

§ij = exp (_ lIxi +e — x5 — 6j|2) —exp (_ l[xi — Xj||2) _

202 202

We can simplifyd;; by a Taylor expansion of the functigf{x) = exp (—%) aroundx = 0:

o~ N (. o~ 2
5y = (xi —x;)" (e — €5) . exp (_|Xz x| ) + Ry (10)

o2 202

For the univariate case, the remainder term sati$fies < R,,q..(e; — €;)? for some universal constant
Rynaz, Since| f”| is uniformly bounded. A similar result holds for multivatéecase. Based on this result, we
are then able to prove the following Lemma (see the Apperatidétails):

Lemma 5. Assuming that: 1k, ...,x, € R¢ are generated i.i.d. fron9) such thatinfi<;<, di/n > ¢
holds in probability for some constang > 0, 2) the distribution of the components«i symmetric about
zero with bounded support, and BAD ||z = o(1), then

ID72AD |2 <, c10® + oW, (11)

(
AD 2AD 3|2 <, 30 + cuo™. (12)
F p € ¢

for some universal constants, co, c3,¢c4 asSn — o0, Wherecrgg) and 054) denote the second and fourth
moments of ¢||, respectively, and £,” indicates that inequality holds in probability.

Combining Egs. (8), (11) and (12), we have the following tie@o for the perturbation bound on the
Laplacian matrix.

Theorem 6. Assuming that: 1k, ...,x,, € R? are generated i.i.d. fron®) such thatinf1<;<,, d;/n > co
holds in probability for some constan > 0, 2) the distribution of components iis symmetric about
with bounded support, and AD ||z = o(1), then

IIL — LI} <p 10 + 20

for some universal constantgandc, asn — oo, Whereo§2) andcr§4) denote the second and fourth moments

of ||¢||, respectively, and £,” indicates that inequality holds in probability.

The result of Theorem 6 holds when there are more than twoeckisBy combining Theorems 3 and 6,
we have obtained a perturbation bound for the mis-clugjedate under suitable conditions.
Remarks. i) The fourth moment is often negligible compared to the seamoment. In such cases the main
source of perturbation in the matrix norm comes from the sdenoment ot. i) We assumey, ..., €, i.i.d.
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Figure 2: Scatter plot ofd;/n for 2000 observations generated i.i.d. from the Gaussian mixture
TN(—(0.3,...,0.3)T, S19x10) + 2N ((0.3,...,0.3)T, S10x10). The matrixSiox10 has all diagonals and
other entries generated i.i.d. uniform frdf 0.5 subject to symmetry.

for simplicity; Theorem 6 remains true when theare resulted from KASP and RASP by a similar proof. iii)
The assumption thal; /n’s are bounded away from zero is a technical assumptiondibatantially simplifies
our proof. We believe that the theorem holds more generBlyure 2 is the scatter plot af; /n’s for data
generated from a Gaussian mixture, which suggests thatgasonable to assume that th¢n are bounded
away from zero.

7 Analysis of KASP and RASP

In this section we show how the analysis described in the@uewsection can be applied to KASP and RASP.
In this analysis the noise component models the differert@den the original data and their corresponding
representative points. With eithermeans or RP tree preprocessing, the variance of pertarbatti original
data can be made small according to Theorem 9 and Theoremhidh watisfies the requirement of the
model.

In the rest of this section, we first present a seewibedding lemmasvhich establish the connection
between the cluster membership of the representativegaint those of the original data. We then present a
performance analysis for KASP and RASP.

7.1 The embedding lemmas

Let.S denote the set of representative data points (with repesjithat correspond to each original data point:

S:{y17"'7y17y21'"ay21"'ayka"'7yk}a (13)
with repetition counts (i.e., the number of points sharlrgdame representative point) denotedy-, . . ., rx
such tha@fz1 r; = n. LetS; = {y1,y2,...,yx} denote the set of unique representative points. We show

that the second eigenvector of the Laplacian matrix comedimg to the data sef can be computed from
that of S;. Since the Laplacian matrix of séf can be made much smaller than that of Sgt significant
reduction in computational cost can be achieved.
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Lemma 7. Let v, denote the second eigenvector of the Laplacian matrix spoading to the data s&t.
Thenv, can be written in the following form:

Vo = [U1,. ., U1, V2, ooy V2, ey Vky ey U] T (14)
where the number of repetitions of eaghs exactlyr;.

Proof. It is sufficient to consideL’, in the Laplacian matrix. 4 (defined in Eq. (2)) for the data s6twith
the first two data points being the same, i®.= {y1,y1,¥2,...,yx}. Itis easy to see that the affinity

matrix of the data sef is given byA = [a;,a;, as, ..., ax], which yieldsLY = [by, by, b, ..., by], where
the first two rows and two columns are the same in both matricattingvo = [v1, va, .. ., vk41]T, then we
have

biivr + biivg + biavs + - - + bigvrr1r = (1 — A2)ur
bi1vi + bi1vg + bigvg + - + bipvgrr = (1 — Ag)vg

which impliesv; = vs. O

Lemma 8. Let thek x k matrix B have the form

B = [Tl cap,ro-ag,..., Tk ~ak],
where matriXa;, ao, . . ., a;] is the affinity matrix computed froy , the set of unique representative points.
Let\p andup = [u1, us,...,ux]’ be the second eigenvalue and eigenvector of the Laplacianixoé B,

respectively. Then the following equality holds (up to isgt
U1 = U1,V2 = U2, ...,V = Uk, (15)

where they; are the components &f, in Eq. (14).

Proof. Itis sufficient to consideEY in the Laplacian matriX. 5. Clearly,L% hasthe fornL% = [riby, raba, ..., 7:bg].
Thus, foreach = 1,...,k, itis true that
rlbﬂul —|— TQbiQUQ —|— e —|— kal-kuk = (1 — AB)’U% (16)

By Lemma 7 the second eigenvectorlof satisfies
binvr + -+ binvr + bigvg + -+ bigua + - -+ bk + -+ bigvg = (1 — Ag)wy,
foreachi = 1,..., k, which after re-arrangement becomes
r1bi1v1 + rabigve + - - - + rrbivr = (1 — Aa)v;. a7)

Since both (16) and (17) solve the same system of linear qsadnd both correspond to the second
eigenvalue, we must have = u; (up to scaling) foti =1, ... k. O

Remark. Empirically we find that, ..., r; are not very different in data sets preprocessed by KASP and
RASP, so in practice we do not perform the scaling; i.e., i@e, . . ., r; in the matrixB equal tol.

Based on Lemma 7 and Lemma 8, the second eigenvectorofihd aplacian matrix 4, corresponding
to the large data s&t = [y1,,...,y1,¥2,---,¥2,---, ¥k - - -, Yk] CAN be exactly computed from a reduced
k x k Laplacian matrixL g, after proper scaling. In the case that n (which usually occurs in practice),
a substantial computational speedup can be achieved (asnd@ated in Section 5). The remaining issue is
how to approximate the original data get;, x, . . ., x,, } (with small distortion) using the reduced represen-
tative data sefy1,y2, - . .,y }- With this achieved, Theorem 6 then ensures that the reguttis-clustering
rate will be small, and will tend to zero in probability. Inegtlhemainder of this section, we show that the dis-
tortion can be made small if the representative points amgced byk-means or by the RP tree quantization
method.
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7.2 Numerical example of the embedding lemmas

As an illustration of the idea of embedding lemmas, we previdre a simple example with three unique
data pointhl = [—1,0]T, Xo = [2,0]T, X3 = [O,?)]T € R%2 LetS = {Xl,Xl,Xg,Xg,Xg,X3,X3} and

Sy = {x1,%2,%3}. Using a Gaussian kernel with bandwidth= /3, we obtain the following matrices for
data sets:

and the eigenvector of interest is given by
vy =[—0.194 —0.194 —0.475 —0.475 0.397 0.397 0.397]. (18)
The affinity matrix for data set; is given by

1.00 0.22 0.19
[al,ag,ag] = 0.22 1.00 0.11
0.19 0.11 1.00

The matrixB (cf. Lemma 8) and., are given by

2x1.00 2x0.22 3x0.19
B=| 2x022 2x1.00 3x0.11 |,
2x019 2x0.11 3x1.00

2x0.33 2x0.08 3x0.06
LY = | 2x0.08 2x0.36 3x0.04 |,
2x0.06 2x0.04 3x0.28

and the eigenvector of interest is given by
up = [—0.299 —0.732 0.612].
By scaling by the facto®.649, uy becomes
up = [—0.194 —0.475 0.397]. (19)

ComparingA with B, LY with LY, and (18) with (19), we verify the claims stated in Lemma 7 aeohma 8
as well as in their proofs.
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7.3 Performance analysis for KASP

Existing work from vector quantization [40, 13] allows usctoaracterize precisely the amount of distortion
when the representative points are computedshyieans clustering if the probability distribution of the
original data is given.

Let a quantizer) be defined ag) : R? — {yy,...,y.} fory; € R% Forx generated from a random
source inR?, let the distortion ofp be defined a®(Q) = E||x — Q(x)||*, which is the mean square error
for s = 2. Let R(Q) = log, k denote the rate of the quantizer. Define the distortionftatetiond(R) as

o) = Q: Ri?QfKRD(Q)'

Then§(R) can be characterized in terms of the source densit§ @nd constantd, s by the following
theorem.

Theorem 9([40]). Let f be the density function fa# (defined in Eq(9)) in R<. Then, for large rates, the
distortion-rate function of fixed-rate quantization has fbllowing form:

Sa(R) = bea- || fllasars) - k7,

where= means the ratio of the two quantities tends td,l; is a constant depending enandd, and

(d+s)/d
1 lajass) = < / fd/(d“)(x)dfc) .

Thus, by Theorems 3 and 6, we arrive at the following chareet#on of the mis-clustering rate of KASP.

Theorem 10. Let the data be generated from a distribution with dengitizet the assumptions for Theorem 3
and Theorem 6 hold. Then the mis-clustering rat@an be computed as:

p=cbaa Ifllaarn k24 +0 (K744, (20)

wherec is a constant determined by the number of clusters, the neei@f the original data, the bandwidth
of the Gaussian kernel and the eigengap of Laplacian matix{inimal eigengap of the Laplacian of all
affinity matrices used in Ncut).

7.4 Performance analysis for RASP

We now briefly discuss the case of RASP, where the distortigrimizing transformation is given by an RP
tree instead of by-means. By combining our perturbation analysis for spéctustering with quantization
results from [8], we obtain an analysis for RASP. Define therage diameter of inputdafa = {x,...,x,}
as [8]

1
Aix(X):W > Ix-ylP
x,yeX

Itis clear that ifu(X) is the center of mass for the data $&tthenA?% (X) = % Yoxex [[x—u(X)|?. A

setX ¢ R is said to have local covariance dimens{af e, ) if its restriction to any ball of radius has a
covariance matrix whose largegteigenvalues satisfy

of - Fog 2 (L) (o +-- 4 07).

The quantization error of the RP tree is characterized mgef the local covariance dimension as follows.
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Theorem 11 ([8]). Suppose an RP tree is built using data setc R?, then there exist constants <
c1, c2 < 1 with the following property. Consider any céllof radiusr such thatX N C' has local covariance
dimensiond’, e,r) with e < ¢;. Pick a pointx € X N C at random, and le€” be the cell that contains at
the next level down. Then o

E[AY(XNC) < (1-2) A5(X N0,

where the expectation is taken over the randomization iittisygd C' and the choice ok € X N C.

Theorem 11 shows that the vector quantization error of RPHehaves as ©("/4) with h the depth of the
tree and!’ the intrinsic dimension of the data. Thus the quantizatiooreean be made small as the tree depth
grows, and a result similar to Theorem 10 holds for RASP.

8 Conclusion

We have proposed a general framework and presented twddastlams for approximate spectral clustering.
Our algorithms leveragke-means and RP tree methods to pre-group neighboring paidtpraduce a set of
reduced representative points for spectral clusterings&lalgorithms significantly reduce the expense of the
matrix computation in spectral clustering, while retaggood control on the clustering accuracy. Evaluation
on a set of real data sets shows that a significant speedupdotral clustering can be achieved with little
degradation in clustering accuracy. Remarkably, our apprate algorithms enable a single machine to
perform spectral clustering for a large dataset — the PokardHlataset — which consists of one million
instances.

We also presented a theoretical analysis of our approxisgegetral clustering algorithms using statisti-
cal perturbation theory. Our perturbation bound reveads tifle mis-clustering rate is closely related to the
amount of data perturbation — one can make the mis-clugteate small by reducing the amount of pertur-
bation. We show that the mis-clustering rate convergesno agthe number of representative points grows.
These results provide a theoretical foundation for ourrtigms and also have potentially wider applicability.
In particular, a natural direction to pursue in future warktie use of other local data reduction methods (e.g.,
data squashing and condensation methods) for preprogesgrbelieve that our bounds can be extended to
these methods. We also plan to explore other methods fayrasgi clustering membership to the original
data according to the membership of the representativebdated on local optimization and edge-swapping
methods.
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9 Appendix

In this Appendix we provide more detailed analysis and pdladt are omitted in the main body of the paper.

9.1 Proof of Lemma 4

We have
L(A) — L(A) = D"3AD™* — (I + AD™" )73 D"%(A+ A)D"%(I + AD™")7%.
Since||AD ||, = o(1), a Taylor expansion t§(X) = (I + X)~2 aroundX = 0,,,, yields

(I+AD )4 —71— %AD‘I L O((AD 1)),
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It follows that
L(A) = L(4) = ~DTRAD™F — SD H(A+ A)DFA -~ SAD H(A+ A)D"
+D 3 (A+A)D20((AD™1)?)
= ~DTIADTE - <% +0(1)) [DtaD 4 - AD #AD 4],
9.2 Proof of Lemma 5

Theorem 6 is implied by Lemma 5, the proof of which we preseméhThe proof involves an application of
the theory of U-statistics. We provide a detailed proof fur tinivariate case while only stating the results
for the multivariate case. Before we proceed, we preserdefiaition and a classical result on U-statistics.

Definition [32]. Let xq,...,x, be ii.d. drawn from some probability distributidh A U-statistic is
defined as

1
U, =U(x1,....%xp) = (T Z h(Xiy s ey X, ),
whereh is a symmetric kernel ant,,, is the set of alln-subsets of 1,...,n}. Letd £ Eph(xy,...,Xm).
The following due to Hoeffding [18] is used in our proof.

Lemma 12([18]). Leth(xy, ..., x,,) be a symmetric kernel. Ep|h| < oo, then

U, —as 0.

Univariate case. For univariate variables,, ..., z,, generated i.i.d. from (9), let;/n > ¢y > 0 for some
universal constant, for: = 1, ..., n. Then we have

1 n n
< g 2 2%

i=1 j=1

- - 1712 S e [(%;74%)2 exp (—(171;7;])2) (i — €)% + Rfj}

1 n n 1 n n
< 2 Z > (ei—e)” + n? D> Ria(ei—ej)’

i=1 j=1

|D~*AD™ %[

I
]+
INgE
&
L[S

= 51 + Isa.

For U-statistics with symmetric kernkl= (¢; —e2)* andh = (e; —e2)*, we can easily show th@ilp|h| < oo
if the ¢, have bounded fourth moments. Note that our quantity differa the U-statistic by a scaling constant
that tends td (it is known as a/-statistig. By Lemma 12, we have

2 4
151 —a.s. Clo'g )7 152 —a.s. 0202 )7

whereo—§2) anda£4) denote the second and fourth moments,a€spectively. Thus we have shown that
ID72AD ™2} <, c10® + 20,

for some universal constaat andcy asn — oo.
We have

n o n 2 n o n
_3 _1 ai; 1 1
||AD 2AD 2||%“ = E E dslcjl-eg' <p cAnd 2 :E :Eg = A3 E Ezz.a
[ 0 ; . 0 ;

i=1 j=1
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whereg; is defined as and bounded by

e [zn: (@ exp <—%) (€i —ex) + Rik)

k=1

2

< nz [C(Ei - ek) + R’IQR(ME( - Ek)ﬂ .
k=1

Thus, using the same set of U-statistics, we get

IAD™2ADTE |2 <, ZZ i —en)? + R2 (e — en)]

COn i=1 k=1
Sa.s. C3‘7(2) + 640(4)
Multivariate case. For multivariate variables, we assume that the second amthfmmoments of the noise on

thek*" components are given @i) ando—,(;f_), respectively. Then similar to the univariate case, we hiage
following result for the multivariate case for Lemma 5. Iethssumptions of Lemma 5 hold, thervas» oo,

=

M=

ID"3ADF |2 <

d
s 3 (a0 + o)+ 3 a (o202)

k=1 i#j=1
= 610'9) + 020'§4),
d d 1
3 1 2
IAD2ADHE <, 3 (a0® ol ) + D ey (0P0l?)
k=1 i#j=1

= C3U§2) + C40’§4),

wheres® ande" denote the second and fourth momentgdff, respectively.

23



